H₂S PREDICTIVE **STUDY**

Empowering cost-effective H₂S management with precise, data-driven insights.

Read Now

(208) 278-2651 Sales@DigesterDoc.com DigesterDoc.com

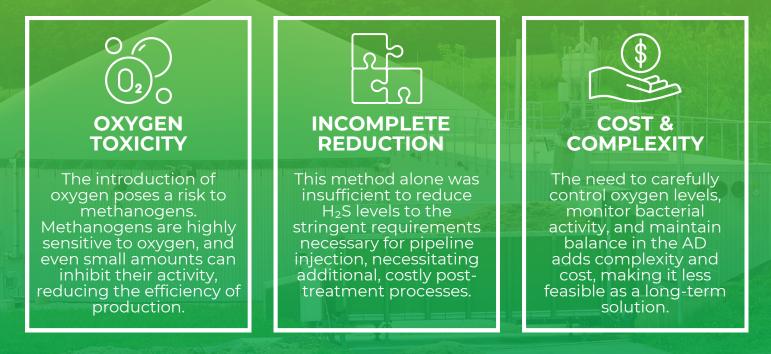
Project **Background**

Accurately predict H₂S levels to unlock innovative, tailored, and cost-effective solutions.

An anaerobic digestion facility contacted Digester Doc to address the operators' critical challenge in managing their biogas production's hydrogen sulfide (H₂S) levels. The client sought to lower operating costs and optimize their gas upgrading system by accurately predicting H₂S levels under various scenarios. Traditional H₂S removal methods had proven effective but were costly and challenging to manage. Therefore, the client commissioned Digester Doc to conduct an H₂S predictive study to explore innovative, tailored solutions.

Study Conducted 2024

Conducted by: Abu Hashnat, PhD: Engineering Analyst | Digester Doc


H₂S poses severe risks in AD, threatening human safety and equipment integrity. Effective H₂S removal is crucial for maintaining biogas quality and reducing operational costs. Digester Doc's H₂S predictive study is vital for optimizing biogas production by analyzing feedstock characteristics, digester design, and environmental conditions. **This comprehensive approach allows for accurate prediction and efficient management of H₂S levels**, ultimately minimizing treatment costs and ensuring a safer, more cost-effective AD operations.

Problem

Before engaging Digester Doc, the AD operators had primarily relied on biological desulfurization, a conventional method for managing H_2S in biogas. This process involves the controlled introduction of small amounts of oxygen into the anaerobic digester's headspace. The oxygen supports the growth of sulfur-oxidizing bacteria, which convert H_2S into elemental sulfur, thereby reducing the overall concentration of H_2S in the biogas.

While biological desulfurization is effective to some degree, **it has several limitations.**

At the project's onset, the AD facility's biogas contained H₂S concentrations as high as 3,500 parts per million by volume (ppmv). These levels were far above the threshold required for pipeline injection to prevent pipeline corrosion and meet safety standards.

Given these challenges, it was clear that the AD facility needed a more reliable and cost-effective approach to H₂S management.

Approach

Our Innovative Predictive Modeling

Digester Doc approached the problem by focusing on predictive modeling and leveraging a deep understanding of the biochemical processes within anaerobic digesters.

The team hypothesized that by accurately modeling the conditions within the digester including feedstock characteristics, chemical oxygen demand (COD) conversion rates, digester design, and environmental factors—they could predict H₂S generation with high precision.

This predictive capability would allow the AD facility to anticipate H₂S levels under various operational scenarios and tailor their treatment strategies accordingly.

Predicted H₂S Levels

The modeling yielded the following predictions for H₂S concentrations at different COD conversion rates:

Max@15% conversion

3,500 ppmv

Expected@35% conversion

<mark>1,500 ppmv</mark>

Optimized@65% conversion

800 ppmv

The study involved the integration of **multiple data points**, including:

COD CONVERSION RATES

A key factor influencing H_2S production, as sulfur compounds in the feedstock are converted to H_2S during digestion. The team simulated different COD conversion rates (15%, 35%, and 65%) to predict corresponding H_2S concentrations.

DIGESTER GEOMETRY & ENVIRONMENTAL CONDITIONS

Factors such as temperature, pH, and redox potential were analyzed to understand their impact on H₂S generation.

FEEDSTOCK COMPOSITION

The sulfur content in the feedstock was a critical input for the model, affecting the potential H₂S output.

These predictions provided the AD facility operators with a clear understanding of the H₂S levels they could expect under varying conditions, enabling them to plan their treatment strategies with greater precision and confidence.

PREDICTIVE

Solution

Based on the predictive model, Digester Doc recommended a twostage treatment approach to manage H₂S levels effectively:

IN-SITU H₂S ABATEMENT

Objective: Reduce H₂S levels from 3,500 ppmv to below 100 ppmv within the digester.

Method: Applying Sulfafix, a ferric oxide-based additive, directly into the digester. Sulfafix is particularly effective in manure-based systems, which align with the facility's feedstock characteristics. The additive works by binding with hydrogen sulfide, forming stable, non-toxic compounds that are easily removed from the digester environment.

GAS POLISHING

Objective: Further reduce H₂S levels to below 100 ppmv, ensuring compliance with pipeline injection standards.

Method: Utilization of Lutum, a highperformance polishing absorbent. Lutum was selected over traditional activated carbon due to its superior capacity for H₂S adsorption and its lower frequency of media changeouts, which significantly reduces labor and maintenance costs

Lb/day

Operational Parameters		
Gas Flow	234	scfm
Initial H ₂ S	3,500	ppmv
Operating Hours	8,440	hours per year
Step-1: Target H ₂ S level	<100	ppmv
Step-2: Target H ₂ S level	<]	ppmv

Although labor costs were not fully known at the time of the study, the reduced frequency of media changeouts and the simplicity of the in-situ treatment were expected to lower overall labor costs compared to traditional methods.

103

DIGESTERDOC.COM

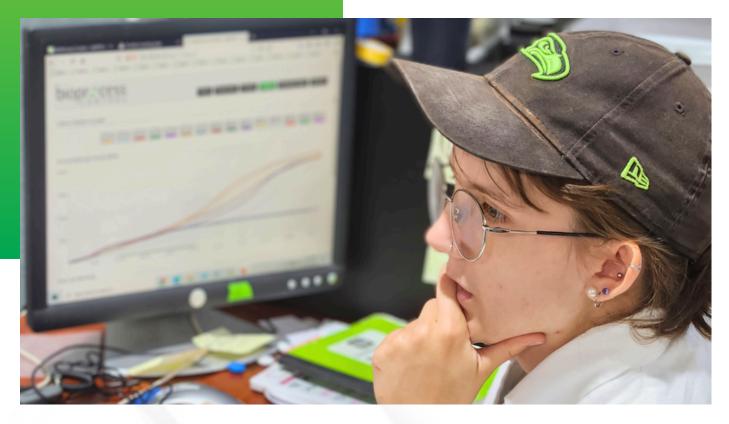
Total H₂S to be removed

H₂S PREDICTIVE

Results & Impact

COST EFFECTIVENESS

The two-stage treatment approach recommended by Digester Doc proved to be the most cost-effective solution for managing H₂S levels at the facility. The innovative combination of in-situ abatement and gas polishing not only met the stringent pipeline injection standards but did so at a lower operational cost than alternative methods.



LONG-TERM BENEFITS

Beyond immediate cost savings, the predictive study provided facility operators with a strategic advantage. By integrating predictive modeling into their operational planning, the facility is now equipped to proactively manage H₂S levels. This proactive approach reduces the likelihood of unforeseen spikes in H₂S concentration, which could otherwise require expensive emergency interventions.

Unlock critical insights for proactive management and targeted solutions against H₂S-related disruptions.

CASE STUDY

Unleash the power of precision with **tailored**, data-driven solutions to conquer your H₂S challenges.

Conclusion

Our predictive H₂S study conducted for this anaerobic digestion facility struggling to find effective H₂S management solutions underscores the value of tailored, datadriven solutions in the biogas industry.

By combining advanced predictive modeling with a deep understanding of the client's operational environment, our team delivered a cost-effective, efficient, and scalable solution for H₂S management.

Elevate your efficiency, slash operational costs, and drive your success to new heights. Let's make it happen.

Next Steps

The results from our H₂S Predictive Study offer a unique opportunity to revolutionize the industry's approach to H₂S management. The tailored, datadriven strategies outlined in the study address current challenges and lay the groundwork for sustainable, long-term operational efficiency.

Please contact our team to unlock a comprehensive view of your digester's H₂S production today. Our expert analysis and tailored recommendations can help you achieve sustainable and efficient biogas production, safeguarding your operations.

CASE STUDY

Don't let H₂S Derail your system.

Contact us to optimize your H₂S management

And take full control of your system today.

H₂S PREDICTIVE STUDY

Empowering cost-effective H₂S management with precise, data-driven insights.

9

Contact Us!

(208) 278-2651 Sales@DigesterDoc.com DigesterDoc.com